
This is the complete list of references cited in the fully updated and revised second edition of The Women’s Brain Book (2025); we’re gradually adding hyperlinks where available for further reading and exploration.
1. Pletzer BA, Kerschbaum HH. 50 years of hormonal contraception – time to find out, what it does to our brain. Front Neurosci. 2014;(8 JUL). doi:10.3389/fnins.2014.00256
2. Wibowo E, Wassersug RJ. Multiple Orgasms in Men—What We Know So Far. Sex Med Rev. 2016;4(2):136-148. doi:10.1016/j.sxmr.2015.12.004
3. Hoekzema E, Barba-Müller E, Pozzobon C, et al. Pregnancy leads to long-lasting changes in human brain structure. Nat Neurosci. 2017;20(2):287-296. doi:10.1038/nn.4458
4. Pritschet L, Santander T, Taylor CM, et al. Functional reorganization of brain networks across the human menstrual cycle. Neuroimage. 2020;220:117091. doi:10.1016/j.neuroimage.2020.117091
5. Mosconi L, Berti V, Dyke J, et al. Menopause impacts human brain structure, connectivity, energy metabolism, and amyloid-beta deposition. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-90084-y
6. Clayton JA. Studying both sexes: a guiding principle for biomedicine. The FASEB Journal. 2016;30(2):519-524. doi:10.1096/fj.15-279554
7. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565-572. doi:10.1016/j.neubiorev.2010.07.002
8. Jacobs EG. Only 0.5% of neuroscience studies look at women’s health. Here’s how to change that. Nature. 2023;623(7988):667-667. doi:10.1038/d41586-023-03614-1
9. Kaluve AM, Le JT, Graham BM. Female rodents are not more variable than male rodents: A meta-analysis of preclinical studies of fear and anxiety. Neurosci Biobehav Rev. 2022;143:104962. doi:10.1016/j.neubiorev.2022.104962
10. Weigard A, Loviska AM, Beltz AM. Little evidence for sex or ovarian hormone influences on affective variability. Sci Rep. 2021;11(1):20925. doi:10.1038/s41598-021-00143-7
11. Shanmugan S, Seidlitz J, Cui Z, et al. Sex differences in the functional topography of association networks in youth. Proceedings of the National Academy of Sciences. 2022;119(33). doi:10.1073/pnas.2110416119
12. Garcia-Sifuentes Y, Maney DL. Reporting and misreporting of sex differences in the biological sciences. Elife. 2021;10. doi:10.7554/eLife.70817
13. Rippon G. Blame the Brain: How neuro-nonsense joined psychobabble to keep women in their place. In: Lecture to the Royal Institution. The Royal Institution; 2016.
14. Cahill L. An issue whose time has come. J Neurosci Res. 2017;95(1-2):12-13. doi:10.1002/jnr.23972
15. Jacobs E. OHBM 2023 Keynote Interview Series: Emily Jacobs. Organization for Human Brain Mapping . Published online 2023.
16. Carey JL, Nader N, Chai PR, Carreiro S, Griswold MK, Boyle KL. Drugs and Medical Devices: Adverse Events and the Impact on Women’s Health. Clin Ther. 2017;39(1):10-22. doi:10.1016/j.clinthera.2016.12.009
17. Graham BM, Tannenbaum C, Witt A, et al. The power—and complexity—of policy to drive advances in women’s health. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt0576
18. Woitowich NC, Beery A, Woodruff T. A 10-year follow-up study of sex inclusion in the biological sciences. Elife. 2020;9. doi:10.7554/eLife.56344
19. McCarthy MM. Estradiol and the Developing Brain. Physiol Rev. 2008;88(1):91-134. doi:10.1152/physrev.00010.2007
20. Williams CM, Peyre H, Toro R, Ramus F. Neuroanatomical norms in the <scp>UK</scp> Biobank: The impact of allometric scaling, sex, and age. Hum Brain Mapp. 2021;42(14):4623-4642. doi:10.1002/hbm.25572
21. Eliot L, Ahmed A, Khan H, Patel J. Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev. 2021;125:667-697. doi:10.1016/j.neubiorev.2021.02.026
22. Joel D, Berman Z, Tavor I, et al. Sex beyond the genitalia: The human brain mosaic. Proceedings of the National Academy of Sciences. 2015;112(50):15468-15473. doi:10.1073/pnas.1509654112
23. McCarthy MM. Sex Differences in the Brain. The Scientist. Published online 2015.
24. Ezkurdia I, Juan D, Rodriguez JM, et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866-5878. doi:10.1093/hmg/ddu309
25. Bronson SL, Bale TL. The Placenta as a Mediator of Stress Effects on Neurodevelopmental Reprogramming. Neuropsychopharmacology. 2016;41(1):207-218. doi:10.1038/npp.2015.231
26. Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate: case far from closed. Nat Rev Neurosci. 2006;7(9):724-731. doi:10.1038/nrn1986
27. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117-121. doi:10.1038/351117a0
28. Graves J. Differences between men and women are more than the sum of their genes. The Conversation. Published online 2015.
29. Bakker J, De Mees C, Douhard Q, et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9(2):220-226. doi:10.1038/nn1624
30. Sacks O. The Man Who Mistook His Wife for a Hat. Picador Classic; 1985.
31. Spalding KL, Bergmann O, Alkass K, et al. Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell. 2013;153(6):1219-1227. doi:10.1016/j.cell.2013.05.002
32. UNICEF. Early Moments Matter For Every Child.; 2017.
33. Likhar A, Patil MS. Importance of Maternal Nutrition in the First 1,000 Days of Life and Its Effects on Child Development: A Narrative Review. Cureus. Published online October 8, 2022. doi:10.7759/cureus.30083
34. Seckl JR, Holmes MC. Mechanisms of Disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6):479-488. doi:10.1038/ncpendmet0515
35. DiPietro JA, Novak MFSX, Costigan KA, Atella LD, Reusing SP. Maternal Psychological Distress During Pregnancy in Relation to Child Development at Age Two. Child Dev. 2006;77(3):573-587. doi:10.1111/j.1467-8624.2006.00891.x
36. Lafortune S, Laplante DP, Elgbeili G, et al. Effect of Natural Disaster-Related Prenatal Maternal Stress on Child Development and Health: A Meta-Analytic Review. Int J Environ Res Public Health. 2021;18(16):8332. doi:10.3390/ijerph18168332
37. King S, Laplante DP. The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress. 2005;8(1):35-45. doi:10.1080/10253890500108391
38. Bethlehem RAI, Seidlitz J, White SR, et al. Brain charts for the human lifespan. Nature. 2022;604(7906):525-533. doi:10.1038/s41586-022-04554-y
39. Schilling KG, Chad JA, Chamberland M, et al. White matter tract microstructure, macrostructure, and associated cortical gray matter morphology across the lifespan. Imaging Neuroscience. 2023;1:1-24. doi:10.1162/imag_a_00050
40. Sydnor VJ, Larsen B, Seidlitz J, et al. Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth. Nat Neurosci. 2023;26(4):638-649. doi:10.1038/s41593-023-01282-y
41. Petitto LA, Marentette PF. Babbling in the Manual Mode: Evidence for the Ontogeny of Language. Science (1979). 1991;251(5000):1493-1496. doi:10.1126/science.2006424
42. Belsky J, Caspi A, Moffitt T, Poulton R. The Origins of You. Harvard University Press; 2020.
43. Caspi A, Houts RM, Belsky DW, et al. Childhood forecasting of a small segment of the population with large economic burden. Nat Hum Behav. 2017;1(1):0005. doi:10.1038/s41562-016-0005
44. Sonuga-Barke EJS, Kennedy M, Kumsta R, et al. Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: the young adult follow-up of the longitudinal English and Romanian Adoptees study. The Lancet. 2017;389(10078):1539-1548. doi:10.1016/S0140-6736(17)30045-4
45. Brieant A, Vannucci A, Nakua H, et al. Characterizing the dimensional structure of early-life adversity in the Adolescent Brain Cognitive Development (ABCD) Study. Dev Cogn Neurosci. 2023;61:101256. doi:10.1016/j.dcn.2023.101256
46. Beck D, Whitmore L, MacSweeney N, et al. Dimensions of Early-Life Adversity Are Differentially Associated With Patterns of Delayed and Accelerated Brain Maturation. Biol Psychiatry. 2025;97(1):64-72. doi:10.1016/j.biopsych.2024.07.019
47. Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychol Bull. 2020;146(9):721-764. doi:10.1037/bul0000270
48. Tonon AC, Ramos-Lima LF, Kuhathasan N, Frey BN. Early Life Trauma, Emotion Dysregulation and Hormonal Sensitivity Across Female Reproductive Life Events. Curr Psychiatry Rep. 2024;26(10):530-542. doi:10.1007/s11920-024-01527-y
49. Liberty K, Tarren-Sweeney M, Macfarlane S, Basu A, Reid J. Behavior Problems and Post-traumatic Stress Symptoms in Children Beginning School: A Comparison of Pre- and Post-Earthquake Groups. PLoS Curr. Published online 2016. doi:10.1371/currents.dis.2821c82fbc27d0c2aa9e00cff532b402
50. Heetkamp T. Adolescent PTSD and Resilience After Earthquakes PTSD and Resilience in Adolescents after New Zealand Earthquakes Adolescent PTSD and Resilience after New Zealand Earthquakes. Vol 44.; 2015.
51. Lambert S, Mark-Shadbolt M, Ataria J, Black A. The Maori response to the 2010 and 2011 Christchurch Otautahi earthquakes. Published online 2012. http://www.teara.govt.nz/en/1966/
52. Beaglehole B. The Psychological Impacts of the Canterbury Earthquakes Canterbury Disaster Research with Context Provided by a Systematic Review of the Psychological Impacts of Natural Disasters on Mental Health. University of Otago; 2022.
53. Saker Z, Rizk M, Merie D, et al. Insight into brain sex differences of typically developed infants and brain pathologies: A systematic review. European Journal of Neuroscience. 2024;60(1):3491-3504. doi:10.1111/ejn.16364
54. Dean DC, Planalp EM, Wooten W, et al. Investigation of brain structure in the 1-month infant. Brain Struct Funct. 2018;223(4):1953-1970. doi:10.1007/s00429-017-1600-2
55. Keller AS, Sun KY, Francisco A, et al. Reproducible Sex Differences in Personalized Functional Network Topography in Youth. Published online September 29, 2024. doi:10.1101/2024.09.26.615061
56. Shanmugan S. Towards Personalized Reproductive Psychiatry: Leveraging Precision Functional Mapping. In: Ann S. Bowers Women’s Brain Health Initiative. ; 2024.
57. Zugman A, Alliende LM, Medel V, et al. Country-level gender inequality is associated with structural differences in the brains of women and men. Proc Natl Acad Sci U S A. 2023;120(20). doi:10.1073/pnas.2218782120
58. Avila‐Rieger JF, Adkins‐Jackson PB, Hill‐Jarrett TG, et al. Early life exposure to structural sexism and late‐life memory trajectories among black and white women and men in the United States. Alzheimer’s & Dementia. Published online December 18, 2024. doi:10.1002/alz.14410
59. Lonsdorf E V. Sex differences in nonhuman primate behavioral development. J Neurosci Res. 2017;95(1-2):213-221. doi:10.1002/jnr.23862
60. Hines M. Human gender development. Neurosci Biobehav Rev. 2020;118:89-96. doi:10.1016/j.neubiorev.2020.07.018
61. Eliot L,. Pink Brain, Blue Brain: How Small Differences Grow Into Troublesome Gaps – And What We Can Do About It. Houghton Mifflin Harcourt; 2010.
62. Hanish LD, Fabes RA. Peer socialization of gender in young boys and girls. In: Encyclopedia on Early Childhood Development. ; 2014.
63. Leman PJ, Tenenbaum HR. Practising gender: Children’s relationships and the development of gendered behaviour and beliefs. British Journal of Developmental Psychology. 2011;29(2):153-157. doi:10.1111/j.2044-835X.2011.02032.x
64. Tenenbaum HR, Ford S, Alkhedairy B. Telling stories: Gender differences in peers’ emotion talk and communication style. British Journal of Developmental Psychology. 2011;29(4):707-721. doi:10.1348/2044-835X.002003
65. Robles de Medina PG, Visser GHA, Huizink AC, Buitelaar JK, Mulder EJH. Fetal behaviour does not differ between boys and girls. Early Hum Dev. 2003;73(1-2):17-26. doi:10.1016/S0378-3782(03)00047-1
66. Aznar A, Tenenbaum HR. Gender and age differences in parent–child emotion talk. British Journal of Developmental Psychology. 2015;33(1):148-155. doi:10.1111/bjdp.12069
67. von Stumm S, Chamorro‐Premuzic T, Furnham A. Decomposing self‐estimates of intelligence: Structure and sex differences across 12 nations. British Journal of Psychology. 2009;100(2):429-442. doi:10.1348/000712608X357876
68. Napp C, Breda T. The stereotype that girls lack talent: A worldwide investigation. Sci Adv. 2022;8(10). doi:10.1126/sciadv.abm3689
69. Bian L, Leslie SJ, Cimpian A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science (1979). 2017;355(6323):389-391. doi:10.1126/science.aah6524
70. Zhao S, Setoh P, Storage D, Cimpian A. The acquisition of the gender‐brilliance stereotype: Age trajectory, relation to parents’ stereotypes, and intersections with race/ethnicity. Child Dev. 2022;93(5). doi:10.1111/cdev.13809
71. Stephens-Davidowitz S. Google, Tell Me. Is My Son a Genius? New York Times. 2014.
72. Lionetti F, Aron A, Aron EN, Burns GL, Jagiellowicz J, Pluess M. Dandelions, tulips and orchids: evidence for the existence of low-sensitive, medium-sensitive and high-sensitive individuals. Transl Psychiatry. 2018;8(1):24. doi:10.1038/s41398-017-0090-6
73. Pluess M, Assary E, Lionetti F, et al. Environmental sensitivity in children: Development of the Highly Sensitive Child Scale and identification of sensitivity groups. Dev Psychol. 2018;54(1):51-70. doi:10.1037/dev0000406
74. Harvard. The Science of Resilience (InBrief). . Harvard Center on the Developing Child.
75. Cooke K. Girl Stuff 8-12 . Viking; 2016.
76. Byrne ML, Whittle S, Vijayakumar N, Dennison M, Simmons JG, Allen NB. A systematic review of adrenarche as a sensitive period in neurobiological development and mental health. Dev Cogn Neurosci. 2017;25:12-28. doi:10.1016/j.dcn.2016.12.004
77. Whittle S, Simmons JG, Byrne ML, et al. Associations between early adrenarche, affective brain function and mental health in children. Soc Cogn Affect Neurosci. 2015;10(9):1282-1290. doi:10.1093/scan/nsv014
78. Mundy LK, Romaniuk H, Canterford L, et al. Adrenarche and the Emotional and Behavioral Problems of Late Childhood. Journal of Adolescent Health. 2015;57(6):608-616. doi:10.1016/j.jadohealth.2015.09.001
79. Witchel SF, Plant TM. Neurobiology of puberty and its disorders. In: ; 2021:463-496. doi:10.1016/B978-0-12-820683-6.00033-6
80. Wohlfahrt-Veje C, Mouritsen A, Hagen CP, et al. Pubertal Onset in Boys and Girls Is Influenced by Pubertal Timing of Both Parents. J Clin Endocrinol Metab. 2016;101(7):2667-2674. doi:10.1210/jc.2016-1073
81. Comninos A, Dhillo W. Kisspeptin: the master regulator of reproduction? Endocrinologist. 2018;128.
82. Seminara SB, Crowley Jr WF. Kisspeptin and GPR54: Discovery of a Novel Pathway in Reproduction. J Neuroendocrinol. 2008;20(6):727-731. doi:10.1111/j.1365-2826.2008.01731.x
83. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences. 2003;100(19):10972-10976. doi:10.1073/pnas.1834399100
84. Herman-Giddens ME, Slora EJ, Wasserman RC, et al. Secondary Sexual Characteristics and Menses in Young Girls Seen in Office Practice: A Study from the Pediatric Research in Office Settings Network. Pediatrics. 1997;99(4):505-512. doi:10.1542/peds.99.4.505
85. Vijayakumar N, Husin HM, Dashti SG, et al. Characterization of Puberty in an Australian Population-Based Cohort Study. Journal of Adolescent Health. 2024;74(4):665-673. doi:10.1016/j.jadohealth.2023.08.035
86. Lunddorf LLH, Ramlau-Hansen CH, Arendt LH, et al. Characteristics of Puberty in a Population-Based Sample of Danish Adolescents. Journal of Adolescent Health. 2024;74(4):657-664. doi:10.1016/j.jadohealth.2023.10.005
87. Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development Among Girls. JAMA Pediatr. 2020;174(4):e195881. doi:10.1001/jamapediatrics.2019.5881
88. Roddick C, Harris M, Hofman PL. The Metabolic Programming of Pubertal Onset. Clin Endocrinol (Oxf). Published online October 3, 2024. doi:10.1111/cen.15138
89. Calcaterra V, Cena H, Loperfido F, et al. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients. 2024;16(16):2732. doi:10.3390/nu16162732
90. Belsky J, Steinberg L, Draper P. Childhood Experience, Interpersonal Development, and Reproductive Strategy: An Evolutionary Theory of Socialization. Child Dev. 1991;62(4):647-670. doi:10.1111/j.1467-8624.1991.tb01558.x
91. MacSweeney N, Allardyce J, Edmondson-Stait A, et al. The role of brain structure in the association between pubertal timing and depression risk in an early adolescent sample (the ABCD Study®): A registered report. Dev Cogn Neurosci. 2023;60:101223. doi:10.1016/j.dcn.2023.101223
92. van Rijn R, Lee NC, Hollarek M, et al. The Effect of Relative Pubertal Maturation and Perceived Popularity on Symptoms of Depression and Social Anxiety in Adolescent Boys and Girls. J Youth Adolesc. 2023;52(11):2384-2403. doi:10.1007/s10964-023-01836-0
93. Lu D, Aleknaviciute J, Bjarnason R, Tamimi RM, Valdimarsdóttir UA, Bertone-Johnson ER. Pubertal development and risk of premenstrual disorders in young adulthood. Human Reproduction. 2021;36(2):455-464. doi:10.1093/humrep/deaa309
94. Luo D, Dashti SG, Sawyer SM, Vijayakumar N. Pubertal hormones and mental health problems in children and adolescents: a systematic review of population-based studies. EClinicalMedicine. 2024;76:102828. doi:10.1016/j.eclinm.2024.102828
95. Balzer BWR, Duke SA, Hawke CI, Steinbeck KS. The effects of estradiol on mood and behavior in human female adolescents: a systematic review. Eur J Pediatr. 2015;174(3):289-298. doi:10.1007/s00431-014-2475-3
96. Boivin JR, Piekarski DJ, Wahlberg JK, Wilbrecht L. Age, sex, and gonadal hormones differently influence anxiety- and depression-related behavior during puberty in mice. Psychoneuroendocrinology. 2017;85:78-87. doi:10.1016/j.psyneuen.2017.08.009
97. BeyondBlue. Parenting and mental health. Parenting and mental health. 2024. Accessed February 27, 2025. https://www.beyondblue.org.au/mental-health/parenting
98. Vijayakumar N, Whittle S. A systematic review into the role of pubertal timing and the social environment in adolescent mental health problems. Clin Psychol Rev. 2023;102:102282. doi:10.1016/j.cpr.2023.102282
99. Munawar K, Kuhn SK, Haque S. Understanding the reminiscence bump: A systematic review. PLoS One. 2018;13(12):e0208595. doi:10.1371/journal.pone.0208595
100. Angier N. Woman: An Intimate Geography. Houghton Mifflin; 1999.
101. Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. The age of adolescence. Lancet Child Adolesc Health. 2018;2(3):223-228. doi:10.1016/S2352-4642(18)30022-1
102. Choudhury S, McKinney KA, Merten M. Rebelling against the brain: Public engagement with the ‘neurological adolescent.’ Soc Sci Med. 2012;74(4):565-573. doi:10.1016/j.socscimed.2011.10.029
103. Altikulaç S, Lee NC, van der Veen C, Benneker I, Krabbendam L, van Atteveldt N. The Teenage Brain: Public Perceptions of Neurocognitive Development during Adolescence. J Cogn Neurosci. 2019;31(3):339-359. doi:10.1162/jocn_a_01332
104. Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH. Puberty and the human brain: Insights into adolescent development. Neurosci Biobehav Rev. 2018;92:417-436. doi:10.1016/j.neubiorev.2018.06.004
105. Giedd JN. The Amazing Teen Brain. Sci Am. 2015;312(6):32-37. doi:10.1038/scientificamerican0615-32
106. Damour L. Untangled: Guiding Teenage Girls through the Seven Transitions into Adulthood. . Penguin Random House; 2016.
107. Zuckerman M. Behavioral Expressions and Biosocial Bases of Sensation Seeking. . Cambridge University Press; 1994.
108. Byrnes JP, Miller DC, Schafer WD. Gender differences in risk taking: A meta-analysis. Psychol Bull. 1999;125(3):367-383. doi:10.1037/0033-2909.125.3.367
109. Gardner M, Steinberg L. Peer Influence on Risk Taking, Risk Preference, and Risky Decision Making in Adolescence and Adulthood: An Experimental Study. Dev Psychol. 2005;41(4):625-635. doi:10.1037/0012-1649.41.4.625
110. Williams KD, Nida SA. Ostracism. Curr Dir Psychol Sci. 2011;20(2):71-75. doi:10.1177/0963721411402480
111. Sebastian CL, Tan GCY, Roiser JP, Viding E, Dumontheil I, Blakemore SJ. Developmental influences on the neural bases of responses to social rejection: Implications of social neuroscience for education. Neuroimage. 2011;57(3):686-694. doi:10.1016/j.neuroimage.2010.09.063
112. Somerville LH. The Teenage Brain. Curr Dir Psychol Sci. 2013;22(2):121-127. doi:10.1177/0963721413476512
113. Elkind D, Bowen R. Imaginary audience behavior in children and adolescents. Dev Psychol. 1979;15(1):38-44. doi:10.1037/0012-1649.15.1.38
114. Solmi M, Radua J, Olivola M, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27(1):281-295. doi:10.1038/s41380-021-01161-7
115. Blakemore SJ. Covid “iso” and the teen brain. Radio National: Big Ideas. Published online 2021.
116. McGorry PD, Mei C, Dalal N, et al. The Lancet Psychiatry Commission on youth mental health. Lancet Psychiatry. 2024;11(9):731-774. doi:10.1016/S2215-0366(24)00163-9
117. Orben A, Przybylski AK, Blakemore SJ, Kievit RA. Windows of developmental sensitivity to social media. Nat Commun. 2022;13(1):1649. doi:10.1038/s41467-022-29296-3
118. Miller J, Mills KL, Vuorre M, Orben A, Przybylski AK. Impact of digital screen media activity on functional brain organization in late childhood: Evidence from the ABCD study. Cortex. 2023;169:290-308. doi:10.1016/j.cortex.2023.09.009
119. Przybylski AK, Orben A, Weinstein N. How Much Is Too Much? Examining the Relationship Between Digital Screen Engagement and Psychosocial Functioning in a Confirmatory Cohort Study. J Am Acad Child Adolesc Psychiatry. 2020;59(9):1080-1088. doi:10.1016/j.jaac.2019.06.017
120. Egami H, Rahman MdS, Yamamoto T, Egami C, Wakabayashi T. Causal effect of video gaming on mental well-being in Japan 2020–2022. Nat Hum Behav. Published online August 19, 2024. doi:10.1038/s41562-024-01948-y
121. McGorry P. The Lancet Psychiatry Commission on Youth Mental Health – Policy Brief. Lancet Psychiatry. Published online 2024.
122. Beltz AM, Moser JS. Ovarian hormones: a long overlooked but critical contributor to cognitive brain structures and function. Ann N Y Acad Sci. 2020;1464(1):156-180. doi:10.1111/nyas.14255
123. Pletzer B, Winkler-Crepaz K, Maria Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol. 2023;69:101060. doi:10.1016/j.yfrne.2023.101060
124. Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone – Friend or foe? Front Neuroendocrinol. 2020;59:100856. doi:10.1016/j.yfrne.2020.100856
125. Gould E, Woolley C, Frankfurt M, McEwen B. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. The Journal of Neuroscience. 1990;10(4):1286-1291. doi:10.1523/JNEUROSCI.10-04-01286.1990
126. Dubol M, Epperson CN, Sacher J, et al. Neuroimaging the menstrual cycle: A multimodal systematic review. Front Neuroendocrinol. 2021;60:100878. doi:10.1016/j.yfrne.2020.100878
127. Mishra S. The menstrual cycle can reshape your brain. Natl Geogr Mag. Published online 2024.
128. Avila-Varela DS, Hidalgo-Lopez E, Dagnino PC, et al. Whole-brain dynamics across the menstrual cycle: the role of hormonal fluctuations and age in healthy women. npj Women’s Health. 2024;2(1):8. doi:10.1038/s44294-024-00012-4
129. Franke K, Hagemann G, Schleussner E, Gaser C. Changes of individual BrainAGE during the course of the menstrual cycle. Neuroimage. 2015;115:1-6. doi:10.1016/j.neuroimage.2015.04.036
130. Engman J, Sundström Poromaa I, Moby L, Wikström J, Fredrikson M, Gingnell M. Hormonal Cycle and Contraceptive Effects on Amygdala and Salience Resting-State Networks in Women with Previous Affective Side Effects on the Pill. Neuropsychopharmacology. 2018;43(3):555-563. doi:10.1038/npp.2017.157
131. Andreano JM, Touroutoglou A, Dickerson B, Barrett LF. Hormonal Cycles, Brain Network Connectivity, and Windows of Vulnerability to Affective Disorder. Trends Neurosci. 2018;41(10):660-676. doi:10.1016/j.tins.2018.08.007
132. Sommer B. The Effect of Menstruation on Cognitive and Perceptual-Motor Behavior: A Review. Psychosom Med. 1973;35(6):515-534. doi:10.1097/00006842-197311000-00007
133. Sundström-Poromaa I. The menstrual cycle influences emotion but has limited effect on cognitive function. Vitam Horm. 2017;107:349-376.
134. Hyde JS. Sex and cognition: gender and cognitive functions. Curr Opin Neurobiol. 2016;38:53-56. doi:10.1016/j.conb.2016.02.007
135. Beltz AM, Berenbaum SA. Cognitive effects of variations in pubertal timing: Is puberty a period of brain organization for human sex-typed cognition? Horm Behav. 2013;63(5):823-828. doi:10.1016/j.yhbeh.2013.04.002
136. Tsigeman ES, Likhanov M V., Budakova A V., et al. Persistent gender differences in spatial ability, even in STEM experts. Heliyon. 2023;9(4):e15247. doi:10.1016/j.heliyon.2023.e15247
137. Hirnstein M, Stuebs J, Moè A, Hausmann M. Sex/Gender Differences in Verbal Fluency and Verbal-Episodic Memory: A Meta-Analysis. Perspectives on Psychological Science. 2023;18(1):67-90. doi:10.1177/17456916221082116
138. Sundstrom Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing from a reproductive perspective. Front Neurosci. 2014;8. doi:10.3389/fnins.2014.00380
139. Pletzer B, Bodenbach H, Hoehn M, et al. Reproducible stability of verbal and spatial functions along the menstrual cycle. Neuropsychopharmacology. 2024;49(6):933-941. doi:10.1038/s41386-023-01789-9
140. Ronca F, Blodgett JM, Bruinvels G, et al. Attentional, anticipatory and spatial cognition fluctuate throughout the menstrual cycle: Potential implications for female sport. Neuropsychologia. 2025;206:108909. doi:10.1016/j.neuropsychologia.2024.108909
141. Weigard A, Loviska AM, Beltz AM. Little evidence for sex or ovarian hormone influences on affective variability. Sci Rep. 2021;11(1):20925. doi:10.1038/s41598-021-00143-7
142. O’Brien PMS, Bäckström T, Brown C, et al. Towards a consensus on diagnostic criteria, measurement and trial design of the premenstrual disorders: the ISPMD Montreal consensus. Arch Womens Ment Health. 2011;14(1):13-21. doi:10.1007/s00737-010-0201-3
143. Mitchell AM, Rajapakse D, Peate M, et al. The “most bothersome symptom” construct: A qualitative study of Australians living with endometriosis. Acta Obstet Gynecol Scand. 2024;103(8):1625-1633. doi:10.1111/aogs.14876
144. Direkvand-Moghadam A, Delpisheh A, Sayehmiri K, Satter K. Epidemiology of Premenstrual Syndrome, A Systematic Review and Meta-Analysis Study. Journal of Clinical and Diagnostic Research. Published online 2014. doi:10.7860/JCDR/2014/8024.4021
145. Romans S, Clarkson R, Einstein G, Petrovic M, Stewart D. Mood and the Menstrual Cycle: A Review of Prospective Data Studies. Gend Med. 2012;9(5):361-384. doi:10.1016/j.genm.2012.07.003
146. Romans SE, Kreindler D, Asllani E, et al. Mood and the Menstrual Cycle. Psychother Psychosom. 2013;82(1):53-60. doi:10.1159/000339370
147. Ussher j. The myth of premenstrual moodiness. The Conversation.
148. Kulkarni J. PMS is real and denying its existence harms women. The Conversation. Published online 2013.
149. Reilly TJ, Patel S, Unachukwu IC, et al. The prevalence of premenstrual dysphoric disorder: Systematic review and meta-analysis. J Affect Disord. 2024;349:534-540. doi:10.1016/j.jad.2024.01.066
150. Kulkarni J, Leyden O, Gavrilidis E, Thew C, Thomas EHX. The prevalence of early life trauma in premenstrual dysphoric disorder (PMDD). Psychiatry Res. 2022;308:114381. doi:10.1016/j.psychres.2021.114381
151. Grewal JK, Mu E, Li Q, Thomas EHX, Kulkarni J, Chen L. The prevalence of traumatic exposure in women with premenstrual dysphoric disorder (PMDD): a systematic review. Arch Womens Ment Health. Published online November 15, 2024. doi:10.1007/s00737-024-01536-z
152. Dubol M, Stiernman L, Sundström-Poromaa I, Bixo M, Comasco E. Cortical morphology variations during the menstrual cycle in individuals with and without premenstrual dysphoric disorder. J Affect Disord. 2024;355:470-477. doi:10.1016/j.jad.2024.03.130
153. Kozlov M. How does the brain react to birth control? A researcher scanned herself 75 times to find out. Nature. 2024;634(8036):1026-1027. doi:10.1038/d41586-024-03368-4
154. Heller C, Güllmar D, Koeppel CJ, et al. Hippocampal volume and affect in response to fluctuating estrogens in menstrual cycle irregularity: a longitudinal single-subject study. npj Women’s Health. 2024;2(1):19. doi:10.1038/s44294-024-00023-1
155. Taylor CM, Pritschet L, Olsen RK, et al. Progesterone shapes medial temporal lobe volume across the human menstrual cycle. Neuroimage. 2020;220:117125. doi:10.1016/j.neuroimage.2020.117125
156. Hidalgo-Lopez E, Noachtar I, Pletzer B. Hormonal contraceptive exposure relates to changes in resting state functional connectivity of anterior cingulate cortex and amygdala. Front Endocrinol (Lausanne). 2023;14. doi:10.3389/fendo.2023.1131995
157. Brønnick MK, Økland I, Graugaard C, Brønnick KK. The Effects of Hormonal Contraceptives on the Brain: A Systematic Review of Neuroimaging Studies. Front Psychol. 2020;11. doi:10.3389/fpsyg.2020.556577
158. Lindseth LRS, de Lange AMG, van der Meer D, et al. Associations between reproductive history, hormone use, APOE ε4 genotype and cognition in middle- to older-aged women from the UK Biobank. Front Aging Neurosci. 2023;14. doi:10.3389/fnagi.2022.1014605
159. Gregory S, Booi L, Jenkins N, Bridgeman K, Muniz-Terrera G, Farina FR. Hormonal contraception and risk for cognitive impairment or Alzheimer’s disease and related dementias in young women: a scoping review of the evidence. Front Glob Womens Health. 2023;4. doi:10.3389/fgwh.2023.1289096
160. Egan KR, Gleason CE. Longer Duration of Hormonal Contraceptive Use Predicts Better Cognitive Outcomes Later in Life. J Womens Health. 2012;21(12):1259-1266. doi:10.1089/jwh.2012.3522
161. Lee JK, Raghavan S, Christenson LR, et al. Longitudinal associations of reproductive factors and exogeneous estrogens with neuroimaging biomarkers of Alzheimer’s disease and cerebrovascular disease. Alzheimer’s & Dementia. 2024;20(7):4613-4624. doi:10.1002/alz.13890
162. Wharton W, Hirshman E, Merritt P, Doyle L, Paris S, Gleason C. Oral contraceptives and androgenicity: Influences on visuospatial task performance in younger individuals. Exp Clin Psychopharmacol. 2008;16(2):156-164. doi:10.1037/1064-1297.16.2.156
163. Skovlund CW, Mørch LS, Kessing LV, Lidegaard Ø. Association of Hormonal Contraception With Depression. JAMA Psychiatry. 2016;73(11):1154. doi:10.1001/jamapsychiatry.2016.2387
164. Wise J. Hormonal contraception use among teenagers linked to depression. BMJ. Published online September 28, 2016:i5289. doi:10.1136/bmj.i5289
165. Zettermark S, Perez Vicente R, Merlo J. Hormonal contraception increases the risk of psychotropic drug use in adolescent girls but not in adults: A pharmacoepidemiological study on 800 000 Swedish women. PLoS One. 2018;13(3):e0194773. doi:10.1371/journal.pone.0194773
166. Lacasse JM, Heller C, Kheloui S, et al. Beyond Birth Control: The Neuroscience of Hormonal Contraceptives. The Journal of Neuroscience. 2024;44(40):e1235242024. doi:10.1523/JNEUROSCI.1235-24.2024
167. Sharma R, Fang Z, Smith A, Ismail N. Oral contraceptive use, especially during puberty, alters resting state functional connectivity. Horm Behav. 2020;126:104849. doi:10.1016/j.yhbeh.2020.104849
168. Beltz A. Hormonal Contraceptives and Behavior: The Potent State of the Nascent Neuroscience. In: Ann S. Bowers Women’s Brain Health Initiative. ; 2024.
169. Petersen N, Beltz AM, Casto K V., et al. Towards a more comprehensive neuroscience of hormonal contraceptives. Nat Neurosci. 2023;26(4):529-531. doi:10.1038/s41593-023-01273-z
170. Soares CN, Zitek B. Reproductive hormone sensitivity and risk for depression across the female life cycle: a continuum of vulnerability? J Psychiatry Neurosci. 2008;33(4):331-343.
171. Peters JR, Schmalenberger KM, Eng AG, Stumper A, Martel MM, Eisenlohr-Moul TA. Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC): A transdiagnostic framework for ovarian steroid influences on psychopathology. Mol Psychiatry. Published online August 15, 2024. doi:10.1038/s41380-024-02693-4
172. Fisher H. Anatomy of Love: A Natural History of Mating, Marriage, and Why We Stray. 2nd ed. Norton; 2016.
173. Suleiman AB, Galván A, Harden KP, Dahl RE. Becoming a sexual being: The ‘elephant in the room’ of adolescent brain development. Dev Cogn Neurosci. 2017;25:209-220. doi:10.1016/j.dcn.2016.09.004
174. Frumin I, Perl O, Endevelt-Shapira Y, et al. A social chemosignaling function for human handshaking. Elife. 2015;4. doi:10.7554/eLife.05154
175. Endevelt-Shapira Y, Perl O, Ravia A, et al. Altered responses to social chemosignals in autism spectrum disorder. Nat Neurosci. 2018;21(1):111-119. doi:10.1038/s41593-017-0024-x
176. MHC-dependent mate preferences in humans. Proc R Soc Lond B Biol Sci. 1995;260(1359):245-249. doi:10.1098/rspb.1995.0087
177. Roberts SC, Gosling LM, Carter V, Petrie M. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proceedings of the Royal Society B: Biological Sciences. 2008;275(1652):2715-2722. doi:10.1098/rspb.2008.0825
178. Durante KM, Griskevicius V, Simpson JA, Cantú SM, Li NP. Ovulation leads women to perceive sexy cads as good dads. J Pers Soc Psychol. 2012;103(2):292-305. doi:10.1037/a0028498
179. Pastor Z, Holla K, Chmel R. The influence of combined oral contraceptives on female sexual desire: A systematic review. The European Journal of Contraception & Reproductive Health Care. 2013;18(1):27-43. doi:10.3109/13625187.2012.728643
180. Gildersleeve K, Haselton MG, Fales MR. Do women’s mate preferences change across the ovulatory cycle? A meta-analytic review. Psychol Bull. 2014;140(5):1205-1259. doi:10.1037/a0035438
181. Wood W, Kressel L, Joshi PD, Louie B. Meta-Analysis of Menstrual Cycle Effects on Women’s Mate Preferences. Emotion Review. 2014;6(3):229-249. doi:10.1177/1754073914523073
182. Brooks R. Round 2: Ovulatory Cycles and Shifting Preferences. The Conversation. Published online 2014.
183. Meston CM, Buss DM. Why Humans Have Sex. Arch Sex Behav. 2007;36(4):477-507. doi:10.1007/s10508-007-9175-2
184. Whipple B, Brash-McGreer K. Management of female sexual dysfunction. In: Sipski ML, Alexander C, eds. Sexual Function in People with Disability and Chronic Illness: A Health Professional’s Guide. Gaithersburg; 1997.
185. Basson R. What You Need to Know: Female Sexual Response.; 2008.
186. Basson R. Female sexual response: the role of drugs in the management of sexual dysfunction. Obstetrics & Gynecology. 2001;98(2):350-353. doi:10.1016/S0029-7844(01)01452-1
187. Nagoski E. Come as You Are: The Surprising New Science That Will Transform Your Sex Life. Simon & Schuster.; 2015.
188. Janssen E, Bancroft J. The Dual Control Model of Sexual Response: A Scoping Review, 2009–2022. The Journal of Sex Research. 2023;60(7):948-968. doi:10.1080/00224499.2023.2219247
189. Georgiadis JR, Kringelbach ML, Pfaus JG. Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol. 2012;9(9):486-498. doi:10.1038/nrurol.2012.151
190. Kingsberg SA, Clayton AH, Pfaus JG. The Female Sexual Response: Current Models, Neurobiological Underpinnings and Agents Currently Approved or Under Investigation for the Treatment of Hypoactive Sexual Desire Disorder. CNS Drugs. 2015;29(11):915-933. doi:10.1007/s40263-015-0288-1
191. Goldstein I, Kim NN, Clayton AH, et al. Hypoactive Sexual Desire Disorder. Mayo Clin Proc. 2017;92(1):114-128. doi:10.1016/j.mayocp.2016.09.018
192. Lucke J. Weekly Dose: flibanserin, the drug that gives women one extra sexually satisfying experience every two months’. 2016: The Conversation. . The Conversation. Published online 2016.
193. Davis SR, Bell RJ, Robinson PJ, et al. Testosterone and Estrone Increase From the Age of 70 Years: Findings From the Sex Hormones in Older Women Study. J Clin Endocrinol Metab. 2019;104(12):6291-6300. doi:10.1210/jc.2019-00743
194. Davis SR. @professorsusandavis. Instagram.
195. Davis S. Talking testosterone and menopause with Prof. Susan Davis. Menopause Research and Education Fund. Published online 2024.
196. Davis SR, Baber R, Panay N, et al. Global Consensus Position Statement on the Use of Testosterone Therapy for Women. J Clin Endocrinol Metab. 2019;104(10):4660-4666. doi:10.1210/jc.2019-01603
197. Dennerstein L, Lehert P. Modeling Mid-Aged Women’s Sexual Functioning: A Prospective, Population-Based Study. J Sex Marital Ther. 2004;30(3):173-183. doi:10.1080/00926230490262375
198. Mernone L, Fiacco S, Ehlert U. Psychobiological Factors of Sexual Functioning in Aging Women – Findings From the Women 40+ Healthy Aging Study. Front Psychol. 2019;10. doi:10.3389/fpsyg.2019.00546
199. Fisher HE, Xu X, Aron A, Brown LL. Intense, Passionate, Romantic Love: A Natural Addiction? How the Fields That Investigate Romance and Substance Abuse Can Inform Each Other. Front Psychol. 2016;7. doi:10.3389/fpsyg.2016.00687
200. Perel E. Mating in Captivity: Lies and Domestic Bliss, and Domestic Bliss, . Harper Collins; 2006.
201. Summer J, Peters. B. What is a sleep divorce? Sleep Foundation. . Sleep Foundation. Published online 2024.
202. Meston CM, Levin RJ, Sipski ML, Hull EM, Heiman JR. Women’s orgasm. Annu Rev Sex Res. 2004;15:173-257.
203. O’Connell HE, Sanjeevan KV, Hutson JM. Anatomy of the clitoris. Journal of Urology. 2005;174(4 Part 1):1189-1195. doi:10.1097/01.ju.0000173639.38898.cd
204. Sample I. Female orgasm captured in series of brain scans. The Guardian. 2011.
205. Wise NJ, Frangos E, Komisaruk BR. Brain Activity Unique to Orgasm in Women: An fMRI Analysis. J Sex Med. 2017;14(11):1380-1391. doi:10.1016/j.jsxm.2017.08.014
206. Komisaruk BR, Rodriguez del Cerro MC. How Does Our Brain Generate Sexual Pleasure? International Journal of Sexual Health. 2021;33(4):602-611. doi:10.1080/19317611.2021.1989534
207. Wibowo E, Wassersug RJ. Multiple Orgasms in Men—What We Know So Far. Sex Med Rev. 2016;4(2):136-148. doi:10.1016/j.sxmr.2015.12.004
208. Turley KR, Rowland DL. Evolving ideas about the male refractory period. BJU Int. 2013;112(4):442-452. doi:10.1111/bju.12011
209. Kontula O, Miettinen A. Determinants of female sexual orgasms. Socioaffect Neurosci Psychol. 2016;6(1):31624. doi:10.3402/snp.v6.31624
210. Dhamala E, Bassett DS, Yeo BT, Holmes AJ. Functional brain networks are associated with both sex and gender in children. Sci Adv. 2024;10(28). doi:10.1126/sciadv.adn4202
211. Matte Bon G, Kraft D, Kaufmann T. How sex and gender shape functional brain networks. Sci Adv. 2024;10(28). doi:10.1126/sciadv.adq3079
212. Swaab DF, Hofman MA. An enlarged suprachiasmatic nucleus in homosexual men. Brain Res. 1990;537(1-2):141-148. doi:10.1016/0006-8993(90)90350-K
213. Abé C, Lebedev A, Zhang R, et al. Cross‐sex shifts in two brain imaging phenotypes and their relation to polygenic scores for same‐sex sexual behavior: A study of 18,645 individuals from the UK Biobank. Hum Brain Mapp. 2021;42(7):2292-2304. doi:10.1002/hbm.25370
214. Dickson N, van Roode T, Cameron C, Paul C. Stability and Change in Same-Sex Attraction, Experience, and Identity by Sex and Age in a New Zealand Birth Cohort. Arch Sex Behav. 2013;42(5):753-763. doi:10.1007/s10508-012-0063-z
215. Gallup. LGBT identification in U.S. ticks up to 7.6%. . Retrieved from https://news.gallup.com. 2023.
216. Zeki S, Romaya JP. The Brain Reaction to Viewing Faces of Opposite- and Same-Sex Romantic Partners. PLoS One. 2010;5(12):e15802. doi:10.1371/journal.pone.0015802
217. Carter CS, Porges SW. The biochemistry of love: an oxytocin hypothesis. EMBO Rep. 2013;14(1):12-16. doi:10.1038/embor.2012.191
218. Pedersen CA, Prange AJ. Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences. 1979;76(12):6661-6665. doi:10.1073/pnas.76.12.6661
219. Churchland PS, Winkielman P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm Behav. 2012;61(3):392-399. doi:10.1016/j.yhbeh.2011.12.003
220. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(7042):673-676. doi:10.1038/nature03701
221. Damasio A. Brain trust. Nature. 2005;435(7042):571-572. doi:10.1038/435571a
222. OECD. OECD Family Database: The Structure of Families (SF).; 2018.
223. Verkroost FCJ, Monden CWS. Childlessness and Development in Sub-Saharan Africa: Is There Evidence for a U-shaped Pattern? European Journal of Population. 2022;38(3):319-352. doi:10.1007/s10680-022-09608-5
224. Sobotka T. Un tiers des femmes d‘Asie de l’Est resteront sans enfant. Population & Sociétés. 2021;N° 595(11):1-4. doi:10.3917/popsoc.595.0001
225. Martínez-García M, Jacobs EG, de Lange AMG, Carmona S. Advancing the neuroscience of human pregnancy. Nat Neurosci. 2024;27(5):805-807. doi:10.1038/s41593-024-01629-z
226. Martínez-García M, Paternina-Die M, Barba-Müller E, et al. Do Pregnancy-Induced Brain Changes Reverse? The Brain of a Mother Six Years after Parturition. Brain Sci. 2021;2021:168. doi:10.3390/brainsci
227. De Lange AMG, Kaufmann T, Van Der Meer D, et al. Population-based neuroimaging reveals traces of childbirth in the maternal brain. Proc Natl Acad Sci U S A. 2019;116(44):22341-22346. doi:10.1073/pnas.1910666116
228. Orchard ER, Ward PGD, Chopra S, Storey E, Egan GF, Jamadar SD. Neuroprotective effects of motherhood on brain function in late-life: A resting state fMRI study. bioRxiv. Published online 2020. doi:10.1101/2020.06.09.143511
229. McKay SM. Baby Brain: The Surprising Neuroscience of How Pregnancy and Motherhood Sculpt Your Brain and Change Your Mind (For the Better). Hachette; 2023.
230. Pritschet L, Taylor CM, Cossio D, et al. Neuroanatomical changes observed over the course of a human pregnancy. Nat Neurosci. 2024;27(11):2253-2260. doi:10.1038/s41593-024-01741-0
231. Hoekzema E, van Steenbergen H, Straathof M, et al. Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture. Nat Commun. 2022;13(1):6931. doi:10.1038/s41467-022-33884-8
232. Orchard ER, Voigt K, Chopra S, et al. The maternal brain is more flexible and responsive at rest: effective connectivity of the parental caregiving network in postpartum mothers. Sci Rep. 2023;13(1):4719. doi:10.1038/s41598-023-31696-4
233. Voldsbekk I, Barth C, Maximov II, et al. A history of previous childbirths is linked to women’s white matter brain age in midlife and older age. Hum Brain Mapp. 2021;42(13):4372-4386. doi:10.1002/hbm.25553
234. Martínez-García M, Paternina-Die M, Cardenas SI, et al. First-time fathers show longitudinal gray matter cortical volume reductions: evidence from two international samples. Cerebral Cortex. Published online September 7, 2022. doi:10.1093/cercor/bhac333
235. Servin-Barthet C, Martínez-García M, Paternina-Die M, et al. Pregnancy entails a U-shaped trajectory in human brain structure linked to hormones and maternal attachment. Nat Commun. 2025;16(1):730. doi:10.1038/s41467-025-55830-0
236. Brunton PJ, Russell JA. The expectant brain: adapting for motherhood. Nat Rev Neurosci. 2008;9(1):11-25. doi:10.1038/nrn2280
237. Russell JA, Douglas AJ, Ingram CD. Chapter 1 Brain preparations for maternity — adaptive changes in behavioral and neuroendocrine systems during pregnancy and lactation. An overview. In: ; 2001:1-38. doi:10.1016/S0079-6123(01)33002-9
238. Grattan DR. 60 years of Neuroendocrinology: The hypothalamo-prolactin axis. Journal of Endocrinology. 2015;226(2):T101-T122. doi:10.1530/JOE-15-0213
239. Ladyman SR, Carter KM, Gillett ML, Aung ZK, Grattan DR. A reduction in voluntary physical activity in early pregnancy in mice is mediated by prolactin. Elife. 2021;10. doi:10.7554/eLife.62260
240. Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. In: Handbook of Clinical Neurology. Vol 171. Elsevier B.V.; 2020:25-55. doi:10.1016/B978-0-444-64239-4.00002-3
241. Paternina-Die M, Martínez-García M, Martín de Blas D, et al. Women’s neuroplasticity during gestation, childbirth and postpartum. Nat Neurosci. 2024;27(2):319-327. doi:10.1038/s41593-023-01513-2
242. Kim P, Strathearn L, Swain JE. The maternal brain and its plasticity in humans. Horm Behav. 2016;77:113-123. doi:10.1016/j.yhbeh.2015.08.001
243. Lingle S, Riede T. Deer Mothers Are Sensitive to Infant Distress Vocalizations of Diverse Mammalian Species. Am Nat. 2014;184(4):510-522. doi:10.1086/677677
244. Marlin BJ, Mitre M, D’amour JA, Chao M V., Froemke RC. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature. 2015;520(7548):499-504. doi:10.1038/nature14402
245. Kim P, Feldman R, Mayes LC, et al. Breastfeeding, brain activation to own infant cry, and maternal sensitivity. Journal of Child Psychology and Psychiatry. 2011;52(8):907-915. doi:10.1111/j.1469-7610.2011.02406.x
246. Rosenblatt JS. Nonhormonal Basis of Maternal Behavior in the Rat. Science (1979). 1967;156(3781):1512-1514. doi:10.1126/science.156.3781.1512
247. Saxbe DE, Edelstein RS, Lyden HM, Wardecker BM, Chopik WJ, Moors AC. Fathers’ decline in testosterone and synchrony with partner testosterone during pregnancy predicts greater postpartum relationship investment. Horm Behav. 2017;90:39-47. doi:10.1016/j.yhbeh.2016.07.005
248. Krol KM, Kamboj SK, Curran HV, Grossmann T. Breastfeeding experience differentially impacts recognition of happiness and anger in mothers. Sci Rep. 2014;4(1):7006. doi:10.1038/srep07006
249. Hahn-Holbrook J, Holt-Lunstad J, Holbrook C, Coyne SM, Lawson ET. Maternal defense: Breast feeding increases aggression by reducing stress. Psychol Sci. 2011;22(10):1288-1295. doi:10.1177/0956797611420729
250. Liu M, Kim DW, Zeng H, Anderson DJ. Make war not love: The neural substrate underlying a state-dependent switch in female social behavior. Neuron. 2022;110(5):841-856.e6. doi:10.1016/j.neuron.2021.12.002
251. Ouellette SJ, Hampson E. Memory and affective changes during the antepartum: A narrative review and integrative hypothesis. J Clin Exp Neuropsychol. 2019;41(1):87-107. doi:10.1080/13803395.2018.1485881
252. Callaghan B, McCormack C, Tottenham N, Monk C. Evidence for cognitive plasticity during pregnancy via enhanced learning and memory. Memory. Published online January 5, 2022:1-18. doi:10.1080/09658211.2021.2019280
253. Henry JD, Rendell PG. A review of the impact of pregnancy on memory function. J Clin Exp Neuropsychol. 2007;29(8):793-803. doi:10.1080/13803390701612209
254. Christensen H, Leach LS, Mackinnon A. Cognition in pregnancy and motherhood: Prospective cohort study. British Journal of Psychiatry. 2010;196(2):126-132. doi:10.1192/bjp.bp.109.068635
255. McCormack C, Callaghan BL, Pawluski JL. It’s Time to Rebrand “Mommy Brain.” JAMA Neurol. 2023;80(4):335. doi:10.1001/jamaneurol.2022.5180
256. Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev. 2022;133. doi:10.1016/j.neubiorev.2021.11.045
257. Winnicott DW. Primary Maternal Preoccupation. In: The Collected Works of D. W. Winnicott. Oxford University Press; 2016:183-188. doi:10.1093/med:psych/9780190271374.003.0039
258. Orchard ER, Ward PGD, Egan GF, Jamadar SD. Evidence of Subjective, But Not Objective, Cognitive Deficit in New Mothers at 1-Year Postpartum. J Womens Health. 2022;31(8):1087-1096. doi:10.1089/jwh.2021.0441
259. Aviv E, Waizman Y, Kim E, Liu J, Rodsky E, Saxbe D. Cognitive household labor: gender disparities and consequences for maternal mental health and wellbeing. Arch Womens Ment Health. Published online July 1, 2024. doi:10.1007/s00737-024-01490-w
260. Austin MP, Highet N and the EWG. Effective Mental Health Care in the Perinatal Period: Australian COPEClinical Practice Guideline. 2023 Revision.; 2023.
261. Kim P, Mayes L, Feldman R, Leckman JF, Swain JE. Early Postpartum Parental Preoccupation and Positive Parenting Thoughts: Relationship with Parent-Infant Interaction. Infant Ment Health J. 2013;34(2):104-116. doi:10.1002/imhj.21359
262. Schweizer S, Graham B. Perinatal intrusions: A window into perinatal anxiety disorders. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt2170
263. Nielsen AM, Stika CS, Wisner KL. The pathophysiology of estrogen in perinatal depression: conceptual update. Arch Womens Ment Health. 2024;27(6):887-897. doi:10.1007/s00737-024-01494-6
264. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of Gonadal Steroids in Women With a History of Postpartum Depression. American Journal of Psychiatry. 2000;157(6):924-930. doi:10.1176/appi.ajp.157.6.924
265. Frokjaer VG. Pharmacological sex hormone manipulation as a risk model for depression. J Neurosci Res. 2020;98(7):1283-1292. doi:10.1002/jnr.24632
266. Meltzer-Brody S, Colquhoun H, Riesenberg R, et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. The Lancet. 2018;392(10152):1058-1070. doi:10.1016/S0140-6736(18)31551-4
267. Loxton D, Lucke J. Reproductive Health: Findings from the Australian Longitudinal Study on Women’s Health. .; 2009.
268. Woolhouse H, Gartland D, Mensah F, Brown S. Maternal depression from early pregnancy to 4 years postpartum in a prospective pregnancy cohort study: implications for primary health care. BJOG. 2015;122(3):312-321. doi:10.1111/1471-0528.12837
269. Pritschet L, Beydler E, Shanmugan S. Toward personalized clinical interventions for perinatal depression: Leveraging precision functional mapping. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt8104
270. Lynch C. Frontostriatal salience network expansion in individuals in depression. X (formerly known as Twitter). September 2024. Accessed March 4, 2025. https://x.com/cl9681/status/1831794532415062172
271. Kitzinger S. Ourselves as Mothers: The Universal Experience of Motherhood. Doubleday; 1992.
272. Grand View Research Inc. Menopause Market Worth $24.4 Billion by 2030 | CAGR: 5.37%. . https://www.grandviewresearch.com/press-release/global-menopause-market.
273. Thomas SL, Randle M, White SL. (Re)framing menopause: a comprehensive public health approach. Health Promot Int. 2024;39(3). doi:10.1093/heapro/daae052
274. Helou V, Mouzahem F, Makarem A, et al. Conflict of interest and funding in health communication on social media: a systematic review. BMJ Open. 2023;13(8):e072258. doi:10.1136/bmjopen-2023-072258
275. Randle M, Mintzes B, McCarthy S, Pitt H, Thomas S. Conflicts of interest in submissions and testimonies to an Australian parliamentary inquiry on menopause. Health Promot Int. 2024;39(6). doi:10.1093/heapro/daae150
276. Krajewski S. Advertising menopause: you have been framed. Continuum (N Y). 2019;33(1):137-148. doi:10.1080/10304312.2018.1547364
277. Pleace K. Why celebrity menopause activism can hinder as well as help women. The Conversation. Published online November 2023.
278. Harlow SD, Gass M, Hall JE, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10. Menopause. 2012;19(4):387-395. doi:10.1097/gme.0b013e31824d8f40
279. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393-405. doi:10.1038/nrendo.2015.82
280. Early menopause – chemotherapy and radiation therapy. Australian Menopause Society. Published online 2020.
281. El Khoudary SR, Greendale G, Crawford SL, et al. The menopause transition and women’s health at midlife: a progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause. 2019;26(10):1213-1227. doi:10.1097/GME.0000000000001424
282. Australasian Menopause Society. Menopause what are the symptoms? 2017. Accessed February 27, 2025. https://www.menopause.org.au/health-info/fact-sheets/menopause-what-are-the-symptoms
283. Australasian Menopause Society. What is menopause? 2022. Accessed February 27, 2025. https://www.menopause.org.au/hp/information-sheets/what-is-menopaus
284. Cray LA, Woods NF, Herting JR, Mitchell ES. Symptom clusters during the late reproductive stage through the early postmenopause. Menopause. 2012;19(8):864-869. doi:10.1097/gme.0b013e31824790a6
285. Weber MT, Rubin LH, Schroeder R, Steffenella T, Maki PM. Cognitive profiles in perimenopause: hormonal and menopausal symptom correlates. Climacteric. 2021;24(4):401-407. doi:10.1080/13697137.2021.1892626
286. Brent LJN, Franks DW, Foster EA, Balcomb KC, Cant MA, Croft DP. Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales. Current Biology. 2015;25(6):746-750. doi:10.1016/j.cub.2015.01.037
287. Mosconi L, Berti V, Dyke J, et al. Menopause impacts human brain structure, connectivity, energy metabolism, and amyloid-beta deposition. Sci Rep. 2021;11(1):10867. doi:10.1038/s41598-021-90084-y
288. Mosconi L. The Menopause Brain. The New Science for Women to Navigate Midlife and Optimise Brain Health for Later Years. . Allen & Unwen; 2024.
289. Jacobs EG, Weiss BK, Makris N, et al. Impact of Sex and Menopausal Status on Episodic Memory Circuitry in Early Midlife. The Journal of Neuroscience. 2016;36(39):10163-10173. doi:10.1523/JNEUROSCI.0951-16.2016
290. Grandi F, Tirapu Ustárroz J. Neurociencia cognitiva del envejecimiento: modelos explicativos. Rev Esp Geriatr Gerontol. 2017;52(6):326-331. doi:10.1016/j.regg.2017.02.005
291. Mosconi L, Nerattini M, Matthews DC, et al. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep. 2024;14(1). doi:10.1038/s41598-024-62820-7
292. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9. doi:10.3389/fnins.2015.00037
293. Wood Alexander M, Honer WG, Saloner R, et al. The interplay between age at menopause and synaptic integrity on Alzheimer’s disease risk in women. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt0757
294. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393-405. doi:10.1038/nrendo.2015.82
295. Hardy JD, Du Bois EF. Differences between Men and Women in Their Response to Heat and Cold. Proc Natl Acad Sci U S A. 1940;26(6):389-398. doi:10.1073/pnas.26.6.389
296. Charkoudian N, Stachenfeld NS. Reproductive Hormone Influences on Thermoregulation in Women. In: Comprehensive Physiology. Wiley; 2014:793-804. doi:10.1002/cphy.c130029
297. Rance NE, Dacks PA, Mittelman-Smith MA, Romanovsky AA, Krajewski-Hall SJ. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: A novel hypothesis on the mechanism of hot flushes. Front Neuroendocrinol. 2013;34(3):211-227. doi:10.1016/j.yfrne.2013.07.003
298. The 2022 hormone therapy position statement of The North American Menopause Society. Menopause. 2022;29(7):767-794. doi:10.1097/GME.0000000000002028
299. The 2023 nonhormone therapy position statement of The North American Menopause Society. Menopause. 2023;30(6):573-590. doi:10.1097/GME.0000000000002200
300. Thurston RC, Aslanidou Vlachos HE, Derby CA, et al. Menopausal vasomotor symptoms and risk of incident cardiovascular disease events in swan. J Am Heart Assoc. 2021;10(3):1-17. doi:10.1161/JAHA.120.017416
301. Thurston RC, Wu M, Chang YF, et al. Menopausal Vasomotor Symptoms and White Matter Hyperintensities in Midlife Women. Neurology. 2023;100(2):E133-E141. doi:10.1212/WNL.0000000000201401
302. Ambikairajah A. Women’s Brain Health: Disentangling the Role of Menopause and Ageing.; 2021.
303. d’Arbeloff T, Elliott ML, Knodt AR, et al. White matter hyperintensities are common in midlife and already associated with cognitive decline. Brain Commun. 2019;1(1). doi:10.1093/braincomms/fcz041
304. Maki PM, Jaff NG. Brain fog in menopause: a health-care professional’s guide for decision-making and counseling on cognition. Climacteric. 2022;25(6):570-578. doi:10.1080/13697137.2022.2122792
305. Greendale GA, Derby CA, Maki PM. Perimenopause and Cognition. Obstet Gynecol Clin North Am. 2011;38(3):519-535. doi:10.1016/j.ogc.2011.05.007
306. Greendale GA, Huang MH, Wight RG, et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology. 2009;72(21):1850-1857. doi:10.1212/WNL.0b013e3181a71193
307. Make P. Perimenopausal Cognitive Changes. In: 19th World Congress on Menopause. ; 2024.
308. Chirinos DA, Yin Z, Schreiner PJ, et al. Trajectories of depressive symptoms in a population-based cohort of Black and White women from late reproductive age through the menopause transition: a 30-year analysis. Menopause. 2024;31(12):1035-1043. doi:10.1097/GME.0000000000002447
309. Badawy Y, Spector A, Li Z, Desai R. The risk of depression in the menopausal stages: A systematic review and meta-analysis. J Affect Disord. 2024;357:126-133. doi:10.1016/j.jad.2024.04.041
310. Freeman EW, Sammel MD, Boorman DW, Zhang R. Longitudinal Pattern of Depressive Symptoms Around Natural Menopause. JAMA Psychiatry. 2014;71(1):36. doi:10.1001/jamapsychiatry.2013.2819
311. Kulkarni J, Maki P. Should MHT be first line for treating perimenopausal depression? In: 19th World Congress on Menopause. ; 2024.
312. Tseng PT, Chiu HJ, Suen MW, et al. Pharmacological interventions and hormonal therapies for depressive symptoms in peri- and post-menopausal women: a network meta-analysis of randomized controlled trials. Psychiatry Res. 2023;326:115316. doi:10.1016/j.psychres.2023.115316
313. Bonkhoff AK, Coughlan G, Perosa V, et al. Sex differences in age-associated neurological diseases—A roadmap for reliable and high-yield research. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt9243
314. Kulkarni J, Gavrilidis E, Hudaib AR, Bleeker C, Worsley R, Gurvich C. Development and validation of a new rating scale for perimenopausal depression—the Meno-D. Transl Psychiatry. 2018;8(1):123. doi:10.1038/s41398-018-0172-0
315. Hynd M, Gibson K, Walsh M, et al. Estradiol modulates resting-state connectivity in perimenopausal depression. J Affect Disord. 2025;371:253-260. doi:10.1016/j.jad.2024.11.068
316. Bonanni E, Schirru A, Di Perri MC, Bonuccelli U, Maestri M. Insomnia and hot flashes. Maturitas. 2019;126:51-54. doi:10.1016/j.maturitas.2019.05.001
317. Panay N, Ang S Bin, Cheshire R, Goldstein SR, Maki P, Nappi RE. Menopause and MHT in 2024: addressing the key controversies–an International Menopause Society White Paper. Climacteric. Published online 2024. doi:10.1080/13697137.2024.2394950
318. Goldstein SR, Ashner L. Could It Be Perimenopause? Little Brown & Company; 1998.
319. Gunter J. The Menopause Manifesto. Citadel Press Books; 2021.
320. Wilson RA, Wilson TA. The Basic Philosophy of Estrogen Maintenance. J Am Geriatr Soc. 1972;20(11):521-523. doi:10.1111/j.1532-5415.1972.tb00753.x
321. Greer G. The Change: Women, Aging and the Menopause. Ballentine Books; 1993.
322. Hersh AL, Stefanick ML, Stafford RS. National Use of Postmenopausal Hormone Therapy. JAMA. 2004;291(1):47. doi:10.1001/jama.291.1.47
323. Writing Group for the Women’s Health Initiative Investigators. Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal Results From the Women’s Health Initiative Randomized Controlled Trial. JAMA: The Journal of the American Medical Association. 2002;288(3):321-333. doi:10.1001/jama.288.3.321
324. Shumaker SA, Legault C, Rapp SR, et al. Estrogen Plus Progestin and the Incidence of Dementia and Mild Cognitive Impairment in Postmenopausal Women. JAMA. 2003;289(20):2651. doi:10.1001/jama.289.20.2651
325. Breast cancer and hormone-replacement therapy in the Million Women Study. The Lancet. 2003;362(9382):419-427. doi:10.1016/S0140-6736(03)14065-2
326. Manson JE, Crandall CJ, Rossouw JE, et al. The Women’s Health Initiative Randomized Trials and Clinical Practice. JAMA. 2024;331(20):1748. doi:10.1001/jama.2024.6542
327. Boardman HM, Hartley L, Eisinga A, et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database of Systematic Reviews. 2015;2015(8). doi:10.1002/14651858.CD002229.pub4
328. Taylor S, Davis SR. Is it time to revisit the recommendations for initiation of menopausal hormone therapy? Lancet Diabetes Endocrinol. Published online October 2024. doi:10.1016/S2213-8587(24)00270-5
329. Mosconi L, Rahman A, Diaz I, et al. Increased Alzheimer’s risk during the menopause transition: A 3-year longitudinal brain imaging study. PLoS One. 2018;13(12):e0207885. doi:10.1371/journal.pone.0207885
330. Engler-Chiurazzi EB, Singh M, Simpkins JW. From the 90׳s to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res. 2016;1633:96-100. doi:10.1016/j.brainres.2015.12.044
331. Barth C, Crestol A, de Lange AMG, Galea LAM. Sex steroids and the female brain across the lifespan: insights into risk of depression and Alzheimer’s disease. Lancet Diabetes Endocrinol. 2023;11(12):926-941. doi:10.1016/S2213-8587(23)00224-3
332. Ambikairajah A, Khondoker M, Morris E, et al. Investigating the synergistic effects of hormone replacement therapy, apolipoprotein E and age on brain health in the UK Biobank. Hum Brain Mapp. 2024;45(2). doi:10.1002/hbm.26612
333. Oppenheimer H, Van Der Meer D, Schindler L, et al. Health-A Mendelian Randomization Study.
334. Panay N, Anderson RA, Bennie A, et al. Evidence-based guideline: premature ovarian insufficiency. Climacteric. Published online December 8, 2024:1-11. doi:10.1080/13697137.2024.2423213
335. Duarte-Guterman P, Albert AY, Barha CK, Galea LAM, on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Sex influences the effects of APOE genotype and Alzheimer’s diagnosis on neuropathology and memory. Psychoneuroendocrinology. 2021;129:105248. doi:10.1016/j.psyneuen.2021.105248
336. Maki PM, Thurston RC. Menopause and Brain Health: Hormonal Changes Are Only Part of the Story. Front Neurol. 2020;11. doi:10.3389/fneur.2020.562275
337. Barth C, Galea LAM, Jacobs EG, Lee BH, Westlye LT, de Lange AMG. Menopausal hormone therapy and the female brain: leveraging neuroimaging and prescription registry data from the UK Biobank cohort. Published online April 8, 2024. doi:10.1101/2024.04.08.24305450
338. Gleason CE, Dowling NM, Kara F, et al. Long-term cognitive effects of menopausal hormone therapy: Findings from the KEEPS Continuation Study. PLoS Med. 2024;21(11):e1004435. doi:10.1371/journal.pmed.1004435
339. Nerattini M, Jett S, Andy C, et al. Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer’s disease and dementia. Front Aging Neurosci. 2023;15. doi:10.3389/fnagi.2023.1260427
340. Coughlan GT, Rubinstein Z, Klinger H, et al. Associations between hormone therapy use and tau accumulation in brain regions vulnerable to Alzheimer’s disease. Sci Adv. 2025;11(10). doi:10.1126/sciadv.adt1288
341. Livingston G, Huntley J, Liu KY, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. The Lancet. 2024;404(10452):572-628. doi:10.1016/S0140-6736(24)01296-0
342. Australasian Menopause Society. HRT and Breast Cancer Risk Position Statement.; 2020.
343. Campbell KE, Dennerstein L, Tacey M, Szoeke CE. The trajectory of negative mood and depressive symptoms over two decades. Maturitas. 2017;95:36-41. doi:10.1016/j.maturitas.2016.10.011
344. Australian Bureau of Statistics. National Study of Mental Health and Wellbeing. .; 2022. Accessed March 4, 2025. ABS. https://www.abs.gov.au/statistics/health/mental-health/national-study-mental-health-and-wellbeing/latest-release.
345. BeyondBlue. What is depression? https://www.beyondblue.org.au/mental-health/depression.
346. BeyondBlue. What is anxiety. https://www.beyondblue.org.au/mental-health/anxiety.
347. Schmaal L, Pozzi E, C. Ho T, et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry. 2020;10(1):172. doi:10.1038/s41398-020-0842-6
348. Lynch CJ, Elbau IG, Ng T, et al. Frontostriatal salience network expansion in individuals in depression. Nature. 2024;633(8030):624-633. doi:10.1038/s41586-024-07805-2
349. Akiki TJ, Jubeir J, Bertrand C, Tozzi L, Williams LM. Neural circuit basis of pathological anxiety. Nat Rev Neurosci. Published online November 27, 2024. doi:10.1038/s41583-024-00880-4
350. Matthews T, Danese A, Caspi A, et al. Lonely young adults in modern Britain: findings from an epidemiological cohort study. Psychol Med. 2019;49(2):268-277. doi:10.1017/S0033291718000788
351. Jiang L, Hao Y, Wang Y, et al. Is early menarche related to depression? A meta-analysis. J Affect Disord. 2025;369:508-515. doi:10.1016/j.jad.2024.10.036
352. Adlington K, Vasquez C, Pearce E, et al. ‘Just snap out of it’ – the experience of loneliness in women with perinatal depression: a Meta-synthesis of qualitative studies. BMC Psychiatry. 2023;23(1):110. doi:10.1186/s12888-023-04532-2
353. Lee SL, Pearce E, Ajnakina O, et al. The association between loneliness and depressive symptoms among adults aged 50 years and older: a 12-year population-based cohort study. Lancet Psychiatry. 2021;8(1):48-57. doi:10.1016/S2215-0366(20)30383-7
354. Achterbergh L, Pitman A, Birken M, Pearce E, Sno H, Johnson S. The experience of loneliness among young people with depression: a qualitative meta-synthesis of the literature. BMC Psychiatry. 2020;20(1):415. doi:10.1186/s12888-020-02818-3
355. Ahmed M, Cerda I, Maloof M. Breaking the vicious cycle: The interplay between loneliness, metabolic illness, and mental health. Front Psychiatry. 2023;14. doi:10.3389/fpsyt.2023.1134865
356. Hodes GE, Epperson CN. Sex Differences in Vulnerability and Resilience to Stress Across the Life Span. Biol Psychiatry. 2019;86(6):421-432. doi:10.1016/j.biopsych.2019.04.028
357. Brosch K, Dhamala E. Influences of sex and gender on the associations between risk and protective factors, brain, and behavior. Biol Sex Differ. 2024;15(1):97. doi:10.1186/s13293-024-00674-4
358. Kuehner C. Why is depression more common among women than among men? Lancet Psychiatry. 2017;4(2):146-158. doi:10.1016/S2215-0366(16)30263-2
359. Zorn J V., Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25-36. doi:10.1016/j.psyneuen.2016.11.036
360. Oldehinkel AJ, Bouma EMC. Sensitivity to the depressogenic effect of stress and HPA-axis reactivity in adolescence: A review of gender differences. Neurosci Biobehav Rev. 2011;35(8):1757-1770. doi:10.1016/j.neubiorev.2010.10.013
361. Merz CJ, Wolf OT. Sex differences in stress effects on emotional learning. J Neurosci Res. 2017;95(1-2):93-105. doi:10.1002/jnr.23811
362. Li SH, Graham BM. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry. 2017;4(1):73-82. doi:10.1016/S2215-0366(16)30358-3
363. Bryant RA, Felmingham KL, Silove D, Creamer M, O’Donnell M, McFarlane AC. The association between menstrual cycle and traumatic memories. J Affect Disord. 2011;131(1-3):398-401. doi:10.1016/j.jad.2010.10.049
364. Ferree NK, Wheeler M, Cahill L. The influence of emergency contraception on post-traumatic stress symptoms following sexual assault. J Forensic Nurs. 2012;8(3):122-130. doi:10.1111/j.1939-3938.2012.01134.x
365. Mordecai KL, Rubin LH, Eatough E, et al. Cortisol reactivity and emotional memory after psychosocial stress in oral contraceptive users. J Neurosci Res. 2017;95(1-2):126-135. doi:10.1002/jnr.23904
366. Hodes GE, Epperson CN. Sex Differences in Vulnerability and Resilience to Stress Across the Life Span. Biol Psychiatry. 2019;86(6):421-432. doi:10.1016/j.biopsych.2019.04.028
367. Kulkarni J, Leyden O, Gavrilidis E, Thew C, Thomas EHX. The prevalence of early life trauma in premenstrual dysphoric disorder (PMDD). Psychiatry Res. 2022;308:114381. doi:10.1016/j.psychres.2021.114381
368. Shea AK, Frey BN, Gervais N, Lopez A, Minuzzi L. Depression in midlife women attending a menopause clinic is associated with a history of childhood maltreatment. Climacteric. 2022;25(2):203-207. doi:10.1080/13697137.2021.1915270
369. Morgan AJ, Reavley NJ, Jorm AF, et al. A Guide to What Works for Depression;; 2019.
370. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2023;28(8):3243-3256. doi:10.1038/s41380-022-01661-0
371. Bloomfield M. Expert reaction to a review paper on the ‘serotonin theory of depression.’ Science Media Centre. Published online 2022.
372. Davey C. The chemical imbalance theory of depression is dead, but that doesn’t mean antidepressants don’t work. The Conversation. Published online 2022.
373. Schaefer JD, Caspi A, Belsky DW, et al. Enduring mental health: Prevalence and prediction. J Abnorm Psychol. 2017;126(2):212-224. doi:10.1037/abn0000232
374. PewResearchCenter. Growing Old in America: Expectations vs. Reality.; 2009.
375. Jeune B, Robine JM, Young R, Desjardins B, Skytthe A, Vaupel JW. Jeanne Calment and her successors. Biographical notes on the longest living humans. In: ; 2010:285-323. doi:10.1007/978-3-642-11520-2_16
376. Evert J, Lawler E, Bogan H, Perls T. Morbidity Profiles of Centenarians: Survivors, Delayers, and Escapers. J Gerontol A Biol Sci Med Sci. 2003;58(3):M232-M237. doi:10.1093/gerona/58.3.M232
377. Neudorf J, Shen K, McIntosh AR. Reorganization of structural connectivity in the brain supports preservation of cognitive ability in healthy aging. Network Neuroscience. 2024;8(3):837-859. doi:10.1162/netn_a_00377
378. Beck D, Whitmore L, MacSweeney N, et al. Dimensions of Early-Life Adversity Are Differentially Associated With Patterns of Delayed and Accelerated Brain Maturation. Biol Psychiatry. Published online July 2024. doi:10.1016/j.biopsych.2024.07.019
379. Nenadić I, Dietzek M, Langbein K, Sauer H, Gaser C. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res Neuroimaging. 2017;266:86-89. doi:10.1016/j.pscychresns.2017.05.006
380. Rogenmoser L, Kernbach J, Schlaug G, Gaser C. Keeping brains young with making music. Brain Struct Funct. 2018;223(1):297-305. doi:10.1007/s00429-017-1491-2
381. Franke K, Ziegler G, Klöppel S, Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. Neuroimage. 2010;50(3):883-892. doi:10.1016/j.neuroimage.2010.01.005
382. Ritchie K. Mental Status Examination of an Exceptional Case of Longevity. British Journal of Psychiatry. 1995;166(2):229-235. doi:10.1192/bjp.166.2.229
383. Dattani S, Rodés-Guirao L. Why Do Women Live Longer than Men?; 2023.
384. Perls T, Fretts R. Why Women Live Longer Than Men. Sci Am. Published online 1998.
385. DementiaAustralia. Is dementia inevitable and should you do the gene test? Published online 2023.
386. Pinto‐Almazán R, Calzada‐Mendoza CC, Campos‐Lara MG, Guerra‐Araiza C. Effect of chronic administration of estradiol, progesterone, and tibolone on the expression and phosphorylation of glycogen synthase kinase‐3β and the microtubule‐associated protein tau in the hippocampus and cerebellum of female rat. J Neurosci Res. 2012;90(4):878-886. doi:10.1002/jnr.22808
387. Mills ZB, Faull RLM, Kwakowsky A. Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer’s Disease? Int J Mol Sci. 2023;24(4):3205. doi:10.3390/ijms24043205
388. Pa J. 9:43 / 1:01:27 A Sex-Specific Lens on Alzheimer’s Disease: Evidence from Clinical Trials and Big Data. In: Ann S. Bowers WBHI. ; 2024.
389. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer’s Disease. New England Journal of Medicine. 2023;388(1):9-21. doi:10.1056/NEJMoa2212948
390. DementiaAustralia. The Sooner You Know The More You Can Do. 2024. Accessed March 5, 2025. https://www.dementia.org.au/brain-health/sooner-you-know-more-you-can-do
391. Welberry HJ, Brodaty H, Hsu B, Barbieri S, Jorm LR. Measuring dementia incidence within a cohort of 267,153 older Australians using routinely collected linked administrative data. Sci Rep. 2020;10(1):8781. doi:10.1038/s41598-020-65273-w
392. Wolters FJ, Chibnik LB, Waziry R, et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States. Neurology. 2020;95(5). doi:10.1212/WNL.0000000000010022
393. Ruitenberg A, Ott A, van Swieten JC, Hofman A, Breteler MMB. Incidence of dementia: does gender make a difference? Neurobiol Aging. 2001;22(4):575-580. doi:10.1016/S0197-4580(01)00231-7
394. Niu H, Álvarez-Álvarez I, Guillén-Grima F, Aguinaga-Ontoso I. Prevalencia e incidencia de la enfermedad de Alzheimer en Europa: metaanálisis. Neurología. 2017;32(8):523-532. doi:10.1016/j.nrl.2016.02.016
395. Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2018;64(4):1077-1083. doi:10.3233/JAD-180141
396. Huque H, Eramudugolla R, Chidiac B, et al. Could Country-Level Factors Explain Sex Differences in Dementia Incidence and Prevalence? A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 2023;91(4):1231-1241. doi:10.3233/JAD-220724
397. Gong J, Harris K, Lipnicki DM, et al. Sex differences in dementia risk and risk factors: Individual‐participant data analysis using 21 cohorts across six continents from the COSMIC consortium. Alzheimer’s & Dementia. 2023;19(8):3365-3378. doi:10.1002/alz.12962
398. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404(6779):721-722. doi:10.1038/35008142
399. Fisher GG, Stachowski A, Infurna FJ, Faul JD, Grosch J, Tetrick LE. Mental work demands, retirement, and longitudinal trajectories of cognitive functioning. J Occup Health Psychol. 2014;19(2):231-242. doi:10.1037/a0035724
400. R Patel V, Liu M, Worsham CM, Jena AB. Alzheimer’s disease mortality among taxi and ambulance drivers: population based cross sectional study. BMJ. Published online December 17, 2024:e082194. doi:10.1136/bmj-2024-082194
401. Stern Y. Build Your Cognitive Reserve: An Interview with Dr. Yaakov Stern. In: Fernandez A, Goldberg E, eds. Sharp Brains Guide to Fitness. Sharp Brains; 2009.
402. Vemuri P, Lesnick TG, Przybelski SA, et al. Association of Lifetime Intellectual Enrichment With Cognitive Decline in the Older Population. JAMA Neurol. 2014;71(8):1017. doi:10.1001/jamaneurol.2014.963
403. Jung JH, Lee GW, Lee JH, et al. Multiparity, Brain Atrophy, and Cognitive Decline. Front Aging Neurosci. 2020;12. doi:10.3389/fnagi.2020.00159
404. Ning K, Zhao L, Franklin M, et al. Parity is associated with cognitive function and brain age in both females and males. Sci Rep. 2020;10(1):6100. doi:10.1038/s41598-020-63014-7
405. Smith CC, Vedder LC, Nelson AR, Bredemann TM, McMahon LL. Duration of estrogen deprivation, not chronological age, prevents estrogen’s ability to enhance hippocampal synaptic physiology. Proceedings of the National Academy of Sciences. 2010;107(45):19543-19548. doi:10.1073/pnas.1009307107
406. Garmany A, Terzic A. Global Healthspan-Lifespan Gaps Among 183 World Health Organization Member States. JAMA Netw Open. 2024;7(12):e2450241. doi:10.1001/jamanetworkopen.2024.50241
407. Belsky DW, Caspi A, Cohen HJ, et al. Impact of early personal‐history characteristics on the Pace of Aging: implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell. 2017;16(4):644-651. doi:10.1111/acel.12591
408. Poulain M, Pes GM, Grasland C, et al. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study. Exp Gerontol. 2004;39(9):1423-1429. doi:10.1016/j.exger.2004.06.016
409. Amigo I. Do ‘blue zones,’ supposed havens of longevity, rest on shaky science? AAAS Articles DO Group. Published online November 21, 2024. doi:10.1126/science.znw477z
410. Rosero-Bixby L. The vanishing advantage of longevity in Nicoya, Costa Rica: A cohort shift. Demogr Res. 2023;49:723-736. doi:10.4054/DemRes.2023.49.27
411. Poulain M, Herm A. Exceptional longevity in Okinawa: Demographic trends since 1975. J Intern Med. 2024;295(4):387-399. doi:10.1111/joim.13764
412. Luchetti M, Aschwanden D, Sesker AA, et al. A meta-analysis of loneliness and risk of dementia using longitudinal data from >600,000 individuals. Nature Mental Health. 2024;2(11):1350-1361. doi:10.1038/s44220-024-00328-9
413. Samtani S, Mahalingam G, Lam BCP, et al. Associations between social connections and cognition: a global collaborative individual participant data meta-analysis. Lancet Healthy Longev. 2022;3(11):e740-e753. doi:10.1016/S2666-7568(22)00199-4
414. Czeszumski A, Eustergerling S, Lang A, et al. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Front Hum Neurosci. 2020;14. doi:10.3389/fnhum.2020.00039
415. Leong V, Byrne E, Clackson K, Georgieva S, Lam S, Wass S. Speaker gaze increases information coupling between infant and adult brains. Proceedings of the National Academy of Sciences. 2017;114(50):13290-13295. doi:10.1073/pnas.1702493114
416. Turk E, Endevelt-Shapira Y, Feldman R, van den Heuvel MI, Levy J. Brains in Sync: Practical Guideline for Parent–Infant EEG During Natural Interaction. Front Psychol. 2022;13. doi:10.3389/fpsyg.2022.833112
417. Schwartz L, Levy J, Endevelt-Shapira Y, et al. Technologically-assisted communication attenuates inter-brain synchrony. Neuroimage. 2022;264:119677. doi:10.1016/j.neuroimage.2022.119677
418. Grant. A. There’s a specific type of joy we’ve been missing. . New York Times. 2021.
419. Mattson MP. Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:37-45. doi:10.1016/j.arr.2014.12.011
420. Raichlen DA, Alexander GE. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health. Trends Neurosci. 2017;40(7):408-421. doi:10.1016/j.tins.2017.05.001
421. Allard M, Lèbre V, Robine J. Jeanne Calment : From Van Gogh’s Time to Ours, 122 Extraordinary Years. W.H. Freeman; 1998.
422. Settersten RA. Relationships in Time and the Life Course: The Significance of Linked Lives. Res Hum Dev. 2015;12(3-4):217-223. doi:10.1080/15427609.2015.1071944
About Dr Sarah
Neuroscientist, Author, Speaker, Director of The Neuroscience Academy suite of professional training programs.
Latest Posts
Free 10 day micro-training in neuroscience

Learn one neuroscience concept a day!
10 simple, bite-sized lessons in brain health, delivered daily to your inbox